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Stability characteristics of a single-phase free convection loop are presented. In  
the experiments, water was placed inside a toroidal glass loop oriented in a 
vertical plane. The lower half of the loop was heated and the upper half was 
cooled. At low heat-transfer rates and also a t  high heat-transfer rates the free 
convection flow was observed to be steady. For the intermediate range, however, 
the flow was found to be highly oscillatory. Stability predictions are also 
developed. The comparison between theory and experiment yields favourable 
agreement. 

Observations of unstable behaviour have been reported previously for single- 
phase fluids in the vicinity of the thermodynamic critical point. In  these situations 
it has been assumed that the unusual behaviour of the fluid properties in the near- 
critical region necessarily constitutes the underlying cause of such instabilities. 
In  contrast t o  this view, analyses by Keller (1966) and Welander (1967) indicate 
that instabilities can occur for ordinary fluids as well. Results of the present study 
confirm this contention, since instabilities were clearly observed for water a t  
atmospheric pressure and moderate temperatures. 

1. Introduction 
Fluid flow in a free convection loop (figure 1) is created by buoyancy forces as 

a result of differences in fluid density induced by temperature variations. Fluid 
in the vicinity of the sink is cooled, becomes more dense and therefore tends to 
move downwards. Conversely, fluid in the vicinity of the source is heated, becomes 
lighter and rises upwards on the right side of the loop. The fluid temperature 
distribution and the associated buoyancy force driving the flow are dependent 
upon the flow rate, as is the frictional retarding force. With the heating and 
cooling conditions at the source and sink maintained constant, an initially 
stationary fluid would be expected to accelerate until the buoyancy and frictional 
effects become equal, thus yielding a steady state of constant flow rate thereafter. 
However, there are circumstances in which a steady state cannot be achieved. 
In these situations an unstable oscillatory flow occurs instead. The existence of 
this phenomenon is well known in the case of two-phase fluids. For single-phase 
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FIGURE 1. Free convection loop. 

fluids, which are the concern of this paper, observations of instabilities have been 
previously reported only for fluids operating in the vicinity of the thermodynamic 
critical point. 

The earliest reported observation of free convection instability for a near- 
critical fluid was made by Schmidt, Eckert & Grigull (1939) using pressurized 
ammonia. This unexpected behaviour was later observed for other near-critical 
fluids in free convection loops, first by Holman & Boggs (1960) for Freon-12 and 
then by Van Putte (1961) for water. In  each of these instances an experimental 
study of the flow and heat-transfer performance was pursued, the instability 
being encountered incidentally. 

Harden (1963) and Cornelius (1965) specifically studied instabilities of near- 
critical Freon-114 in free convection loops. Two frequency ranges were found, 
the higher frequencies apparently being associated with the propagation of sonic 
waves in the fluid. Finite-difference calculations based on the conservation 
equations also exhibited instabilities, and these were correlated with the observed 
oscillations in the lower frequency range. 

The references cited above treat only instabilities encountered in the vicinity 
of the critical point. In  each of these cases it was assumed that the instability was 
caused by the large fluid-property variations in this region. The existence of such 
instabilities for ordinary fluids a t  moderate pressures did not appear likely. 
Further, Alstad et al. (1956) measured the transient response of afree convection 
loop containing ordinary water and did not observe any instabilities. However, 
Keller (1966) and Welander (1967) have shown analytically that loop flow 
instabilities are predicted by the dynamics of the system, without consideration 
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FIGURE 2. Free convection loop employed for experimental study 
( R  = 38 cm, r = 1.5 cm). 

of unusual fluid-property behaviour. On the basis of these analyses instabilities 
should exist under certain conditions for ordinary fluids, as well as near-critical 
fluids, even though one may not intuitively expect them. To the knowledge of 
the authors, no experiments have been reported previously which exhibit the 
instability for an ordinary fluid at moderate pressures and temperatures. Since 
the existence of these instabilities has been predicted analytically, it  appears 
appropriate to provide an experimental confirmation. This is the primary purpose 
of the present paper, which reports observation of instabilities for a loop con- 
taining water a t  a pressure of one atmosphere and at moderate temperatures. In  
addition, it is shown that a stability analysis of the system yields predictions 
which are in agreement with the experiments. 

2. Experimental apparatus 
A loop of circular geometry was chosen for this study; figure 2 shows the 

essential features. This system allowed for distributed heating and cooling, and 
was also tractable to analysis. Water circulated inside the toroidal loop, which 
was made of Pyrex glass. A concentric cooling jacket of the same material sur- 
rounded the upper half of the torus, while heat was supplied to the lower half by 
means of two ribbon-type heating elements connected to a variable electrical 
power supply. An autotransformer was used to supply electrical power. The 
ribbon was tightly wound on the glass with the windings close together in an 
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attempt to approach a constant-heat-flux condition a t  the wall. The power 
supplied to the windings was measured with a wattmeter. The lower half of the 
loop was wrapped on the outside with glass-wool insulation to minimize heat 
losses. 

Tap water was supplied to the cooling jacket through a flowmeter, and its 
temperature was measured with precision thermometers placed upstream and 
downstream of the cooling jacket in order to provide a measurement of the heat 
flow from the system to the coolant. The coolant flow rate was large enough so 
that the tube wall was essentially a t  a uniform temperature only slightly above 
the temperature of the coolant. The interior of the loop was connected by a tube 
to an open reservoir to maintain it essentially at  atmospheric pressure. The cooler 
section of the torus was left uncovered to allow visual observation of the flow. 
The loop was filled with distilled water. 

Two copper-constantan thermocouples were inserted inside the loop at the 
ends of the heater section (points A and B in figure 2) to monitor the temperature 
of the interior fluid. The thermocouples were placed a t  a distance from the wall 
0.45 times the inner tube radius. This corresponds to the position a t  which the 
local fluid temperature is equal to the bulk temperature for a conventional fully 
developed laminar profile. Although the conditions inside the loop were not 
expected to conform closely to those of the fully developed laminar regime, this 
position was adopted for lack of better information. For turbulent flow the 
temperature profile can be expected to be quite flat, so that the exact position 
of the probe is not very critical. The thermocouple wires were connected to 
provide measurements of the water temperature a t  one end of the heated section 
(point A )  and also the temperature difference across the heated section (points 
A and B ) .  A strip-chart recorder provided continuous plots of these signals. 

3. Experimental observations 
At the start of each test there was no flow inside the loop, the water in the lower 

half being heated and that in the upper half being cooled. For this initial condition 
local heat convection and conduction occurred owing to the large temperature 
gradients at sections A and B. This condition was unstable and gave way to a 
flow under any disturbance, and the water began to flow in one direction or the 
other. For initial motion in the counterclockwise direction cold water moved 
across section A and hot water moved across section B. This produced sizeable 
density gradients in both halves of the loop, and the resulting buoyancy force 
accelerated the flow. The temperature and density gradients were moderated as 
the flow rate increased, and this caused the buoyancy driving force to decrease. 
Simultaneously, frictional resistance to the motion increased. In  some cases, 
steady-state conditions were finally achieved when the buoyancy driving force 
and frictional force became equal. In  other cases, as noted in 6 1, the flow failed 
to reach a steady state and oscillated indefinitely. Thus, both stable and unstable 
flow behaviour were observed in the present study when the electrical heat 
input, coolant flow rate and coolant inlet temperature were maintained constant. 

In  the case of stable operation any disturbance was observed to damp out as 
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FIGURE 3. Fluctuations in the temperature difference between sections A and B. 
(a) Stable flow, ( b )  neutrally stable flow, (c) unstable flow. 

the circulation flow rate became constant. In  the case of unstable operation the 
fluid temperatures were observed to fluctuate with sizeable amplitudes, indicating 
variations in the flow rate. In  typical unstable situations the flow rate not only 
oscillated, but reversed direction as well. Between the stable and unstable 
regimes there was observed to be a condition under which the temperatures 
exhibited sustained fluctuations of approximately constant amplitude. This 
condition is classified as neutrally stable. Figure 3 illustrates various forms of 
observed recordings of the temperature difference between sections A and B for 
different flow conditions. In  the case of the stable flow situation shown, TB is 
greater than T,, indicating flow in the counterclockwise direction. Conversely, 
clockwise flow was detected when TB was observed to be smaller than TA. Notice 
that the unstable flow case shown exhibits a flow reversal, from counterclockwise 
to clockwise motion, as evidenced by a change in the sign of the recorded tempera- 
ture difference, from positive to negative. 

It was observed that the amplitude of the oscillation kept increasing until the 
temperature-difference curve passed through zero. This was associated with 
a reversal of the flow. In  the unstable situation depicted in figure 3 the time- 
averaged flow is counterclockwise during the initial stage of amplification. This 
is followed by a second stage of amplification, during which the time-averaged 
flow is clockwise, and the counterclockwise time-averaged flow appears once 
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FIGURE 4. Fluctuations in the temperature difference between sections A and B exhibiting 
reversion to original flow direction after a flow reversal. 

again during the third stage. Thus, the time-averaged flow alternates indefinitely 
between clockwise and counterclockwise, with the actual flow oscillating during 
each of these stages about the time-averaged value. However, in most cases there 
was not a regular periodicity of the time-averaged flow as characterized by the 
unstable situation illustrated in figure 3. In  these instances (see figure 4) a parti- 
cular flow reversal was not necessarily followed by an amplification stage in the 
reversed flow direction. Instead the flow, after reversing, would immediately 
revert back to the original flow direction and this would be followed by another 
amplification stage until the next flow reversal occurred. At that point the flow 
might revert back immediately to the original flow direction, as in the previous 
reversal, or this might be followed by an amplification in the reversed flow 
direction as shown in figure 4. In all unstable situations the flow changed 
alternately between clockwise and counterclockwise, with each reversal being 
followed by either a sustained stage of amplification or a reversion to the previous 
flow direction. The flow reversals indicated by sign changes in the temperature 
difference (figures 3 and 4) were verified by visual observation of the motions of 
small particles suspended in the circulating water. These could be viewed easily 
in the uncovered upper portion of the glass loop. 

It is interesting to note that, on the basis of analysis, Keller (1966) describes 
unstable conditions in which the flow oscillates while always moving in the same 
direction. This description compares favourably with the oscillations observed 
during each amplification stage as shown in figures 3 and 4, but does not account 
for the observed flow reversals. On the other hand the 'numerical experiments' 
of Welander (1967), based on a finite-difference analysis, did show flow reversals 
similar to those exhibited by the experimental apparatus of the present study 
(figures 3 and 4). These comparisons are considered significant despite differences 
in the systems investigated. Keller and Welander studied rectangular loops with 
straight vertical conduits and with heating and cooling over small discrete sections 
a t  the bottom and top, whereas the apparatus used in this investigation was 
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circular and incorporated distributed heating and cooling sections. This choice 
was made since distributed heating and cooling could be readily obtained; short 
discrete sections would have provided far less capacity experimentally. Also, 
Creveling (1 964) had obtained preliminary stability predictions for the circular 
loop, and it was therefore desired to pursue this case further. 

It was found that there were two ranges of heat input in which the system was 
stable: a low heat input range in which the flow appeared laminar, and a high 
heat input range which was accompanied by turbulent flow. At intermediate 
values of the heating the flow was found to be unstable. The boundaries of this 
region of instability were found to be approximately 0.1 1 and 0.70 W/cm2. The 
frequency of the oscillations increased from 0.007 to 0.01 8 Hz as the heat input 
was increased within the unstable range. I n  each case the period of oscillation was 
found to be approximately equal to the time required for an element of fluid to 
circulate once around the loop. 

It was observed that when a change in heating was imposed to cause a transi- 
tion from a stable steady state into an unstable situation, the oscillations 
developed very gradually and the flow reversals did not start until a considerable 
time had elapsed. A similar phenomenon occurred during the transition from 
unstable to stable conditions, in which case the oscillations did not subside until 
a considerable time had elapsed after the change in input heating. I n  some cases 
the waiting periods were approximately 2 h. Several series of experiments were 
conducted a t  both progressively increasing and decreasing heating levels. The 
transitions between steady and unsteady flows were found to occur a t  the two 
values of the heating given above regardless of whether the heating rate was being 
increased or decreased. 

During the turbulent tests fast and fairly uniform eddies moving in the direction 
of the bulk flow were observed in the fluid. But occasionally, near the inlet to the 
cooled section, some eddies moved in the opposite direction, that is, towards the 
heated section. This indicated that, in a small region a t  the beginning of the 
cooled section, the fluid velocity a t  the wall was opposite to the bulk movement 
of the flow, undoubtedly owing to the rapid cooling and increase in density of the 
fluid near the wall. 

At this point it is appropriate to inquire about the physical cause of the 
observed instability. As discussed by Welander (1967), it appears a t  first glance 
that the system should always be stable. The argument is that an increase in flow 
rate above the steady-state value produces a corresponding increase in friction 
and a decrease in total buoyancy. The net effect is to retard the flow, thus tending 
to return the system to the original steady state. A decrease in flow produces the 
opposite effect. According to this argument the system is self-correcting under 
any flow disturbance, thus leading to the expectation that the system should 
always be stable. 

Obviously the system can be unstable, so the above explanation based on 
simple intuitive reasoning is incomplete. Welander has provided a plausible 
argument to explain the unstable situation. First, consider the system to be 
operating in a steady state. Then, if a small thermal disturbance causes a ‘pocket ’ 
of fluid to emerge from the heated section slightly hotter than is normal for this 
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steady state, the total buoyancy is momentarily increased and the flow accelerates 
slightly. This hotter-than-normal ‘pocket ’ therefore proceeds through the cooled 
section more rapidly than normal, and is warmer than normal as it leaves the 
cooler. The total buoyancy is therefore decreased, decelerating the flow. Thus, 
the ‘pocket ’ enters the heated section once more, but at a higher inlet temperature 
and at a lower velocity. These two effects combined cause the pocket to emerge 
from the heater still hotter than before. This explanation is in accord with the 
observed build-up of temperature oscillations during periods of amplification as 
shown in figures 3 and 4. It is also in agreement with the observation from the 
present study that the period of oscillation is approximately equal to the time 
required for an element of fluid to circulate once around the loop. Following the 
same kind of logic for a pocket of fluid which initially emerges from the heater 
cooler than normal leads to the same oscillatory result. This line of reasoning can 
also be extended to provide a plausible explanation for the observed flow reversal 
which occurs at the end of each amplification stage. This physical description is 
discussed here since the mathematical stability analyses given by Keller and 
Welander and that given in Q 5 of this paper do not seem to yield a vivid physical 
picture of how the instability is generated. The analysis is successful, however, in 
predicting the range of conditions in which this phenomenon occurs. 

4. Evaluation of system operation 
An energy balance was made for each test to evaluate the magnitude of the heat 

exchange with the environment. To do this, the electrical power input was com- 
pared with the rate at which energy was removed by the water in the cooling 
jacket. Heat removal was calculated from the measured mass flow rate of the 
cooling water and the difference in the coolant temperatures at either end of the 
jacket. Except for the experiments with the lowest heat fluxes, the energy 
removed by the coolant was found to be different from the heater input by less 
than 10 yo, thus providing an indication of the extent of heat exchange with the 
environment. 

The mass flux G inside the loop was calculated from an energy balance across 
the heated section. Hence, 

G = Q/nr2CAT, 

where Cis the specific heat of the fluid, Q the rate of electrical heat input and AT 
the temperature increase of the fluid across the heater. Heat loss to the environ- 
ment and heat conduction through the ground glass joints between the heated 
and cooled sections were neglected in these calculations. For the unstable runs AT 
was taken to be the average of the oscillatory response recorded (figures 3 and 4). 
The input heat flux q was computed from 

(1)  

q = Q/2rr2rR. (2) 

Values calculated from (1) and (2) provided the experimental values of the mass 
flux as a function of heat flux for the system. A plot of these data is compared 
with the corresponding analytical prediction in $ 5 ;  the results show that G 
increases with q as expected. 



1 .O 

8 

6 

4 

2 

0.1 

f 8  
6 

4 

2 

0.01 

8 

Stability of a single-phase free convection loop 

I I I 1  I 1 1 1 1  I 1 1 I I I I  

I I I I I 1 1 1 1  I I I I l l 1  

102 2 4 6 8 lo3 2 4 6 8  
Re 

73 

0 4  

FIGURE 5. Effect of Reynolds number on friction factor. 

For purposes of analysis correlations for the friction factor and Nusselt number 
were needed. It was determined experimentally that standard correlations are 
greatly in error for flows in free convection loops. Therefore, toroidal-loop 
correlations were developed using experimental measurements. The rationale 
employed in constructing these correlations was based on a consideration of 
steady-state conditions only. 

From the analysis in $5  the friction factor f can be expressed in terms of G 
and q according to 

f = 4gRP;Pql~cG3, (3) 

where g is the acceleration due to gravity, ,13 is the thermal expansion coefficient 
and po is a reference fluid density. For each calculated value of G the Reynolds 
number Re = 2rG/p can be evaluated. If the calculated values off and Re are 
plotted in logarithmic co-ordinates, a straight-line fit to this plot yields the values 
of a and b for a friction-factor correlation of the form f = a/Reb. This is shown in 
figure 5. The trend defined by the data points exhibits a slope change for Re  
approximately equal to 1500, indicating the region of transition between the 
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laminar and turbulent regimes. The straight lines shown are those giving a least- 
squares fit to the data points. The resulting correlations are 
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f = 151/Re1.l7 

f = 0-88/Rea'45 for hminar flow and 

for turbulent flow. Note from figure 5 that the experimentally determined values 
off are somewhat higher than those predicted by the standard correlations for 
forced flow in a tube. 

As in the case of the friction factor, experimentally determined values of the 
heat-transfer coefficient in the upper portion of the loop were found to be 
considerably higher than those obtained from the standard forced convection 
correlations for flow in a tube. This agrees with the conclusion of Holman & 
Boggs (1960), who observed similar deviations for free convection loop flow. To 
alleviate the problem a correlation for the Nusselt number was generated 
experimentally on the basis of the development below. 

The heat-transfer rate to the cooling jacket is expressed as h2n2rR(Tb - ?&, 
where h is the heat-transfer coefficient and (T, - T,)av is the average difference 
between the bulk fluid and wall temperatures. This heat flow is balanced by the 
net convective flow corresponding to the temperature difference between points A 
and B in figure 2,  and this difference also provides a measure of the buoyancy 
torque about the centre of the loop. For the purpose of establishing the functional 
form of the correlation, a simplified approximation for the buoyancy torque can 
be written down in terms of this temperature difference. This approximate torque, 
when set equal to the opposing frictional torque for steady flow, leads to 

where Pr is the Prandtl number, the Nusselt number N u  is defined as 2rhlk ( k  being 
the thermal conductivity of the fluid) and the Grashof number Gr is defined as 
g(2r)3/3p2(Tb - T,)av/,u2. The form of the correlation given in (6) is appropriate to 
the actual system. However, values of the constants a and b obtained from (4) 
and ( 5 )  are somewhat in error in (6), as expected, owing to the approximations 
used in this simplified derivation. Hence, the form of (6) is retained a t  this point, 
but a is replaced by a different constant m, and the exponent 3 - b is replaced by 

The left-hand side of ( 7 )  contains only fluid properties, system dimensions, and 
the product of h and (Tb - Tw)av, which is the average heat flux at  the surface of 
the cooled section. The latter is easily calculated by dividing the measured heat 
input rate by the surface area of the cooler, Thus, a numerical value of 

NuGr R 
Pr r 
-- 

was calculated for each test. As described previously, a calculated value of Re was 
also obtained for each test. Values of (NuGrlPr) (Rlr) and Re, as obtained from 
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FIGURE 6. Effect of Reynolds number on heat-transfer parameter. 

the experiments, are plotted in logarithmic co-ordinates in figure 6. Two straight 
lines were fitted to the data points by the method of least squares. The resulting 
correlations are 

for laminar flow and 

NuGr R -- = 1260Re1'6 
Pr r 

( 9 )  

for the turbulent regime. Note that the data in figure 6 follow a well-defined trend 
with little scatter. This confirms the validity of the form of (7) .  

Equations (4), ( 5 ) ,  (8) and (9) make it possible to  determine analytically, for 
each value of the input heating rate, the steady-state flow and temperature 
distribution, and whether the steady-state solution is stable or unstable. This 
analytical development now follows. 
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5. Comparison with theory 
Since the apparatus used in this study was different from those analysed by 

Keller (1966) and Welander (1967)) an analysis of the system (figure 2) is required 
to provide a detailed comparison of observations with theory. It is considered 
that the system is subjected to a uniform heat flux over the internal area of its 
lower half and is cooled by applying a constant wall temperature over the entire 
internal area of its upper half. For simplicity, a one-dimensional analysis is 
performed. Axial heat conduction and viscous heating are neglected, and fluid 
properties are considered constant except for the effect of density variations in 
producing buoyancy. For this purpose density is related to temperature according 
to p = p o [ l  - p(T - To)]) where po is a nominal value of the density corresponding 
to a reference temperature To. For convenience, To is taken to be the cooler wall 
temperature, T,. The conservation equations are 

aT V aT (2hlr) (Tw- T )  for 0 < 8 < n) 
pc -+-- 

[ a t  R a e ] = (  ( 2 / r ) q  for n < 8 < 2n, 

For steady-state conditions (10) indicates that the mass flux p V is constant 
along the loop. Integrating (12) around the loop gives 

which shows the balance between buoyancy and friction. By definition the wall 
shear stress is expressed as 7 ,  = &fp V2,  where f is correlated by f = a/Rebaccording 
to the experimental evaluation described in § 4. 7," can therefore be written as 
apbG2-b/2b+4bp. This is inserted into (13) and the buoyancy term is expressed in 
terms of T to give " 

apb G2-b 2n 
g p o a j 2 v  T cos 8d8 - - - = 0. 

0 2brb+l po 

Integration of (1  1) for steady-state conditions leads to two expressions for T(8) 
for the heated and cooled sections, respectively. Imposing continuity conditions 
T(0)  = T(2n) and T(n-) = T(n+) leads to 

e--ABOIn for 0 < 0 < n, 
A eAB 

T,+-- ,8eAB- 1 
T =  I 

where A = Bi.rRPg/rCg and B = hlbq. In  this development it is assumed that h is 
constant throughout the cooled section. Inserting (15) and (16) into the buoyancy 
integral of (14) leads to expressions in terms of A, B and /3. For the apparatus used 
in this study A was found to be small enough and B was large enough that the 
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FIGURE 7. Comparison of analytical mass-flux prediction, equation (17), with experiment. 
- , analytical prediction. Experiment: 0 ,  stable; 0, unstable. 

approximate forms for A -+ 0 and B B 1 were sufficiently accurate. On this basis 
the integral in (14 )  is approximately 4A/n,8. Solving for G gives 

G = [2b+2gRrbpt,8q/naC,ub]11(3-b), (17 )  

or in non-dimensional form, 
Re2-b/Grm = l 6 / a ,  

where Gr, is a modified Grashof number defined as Rgptr2,8q/n,u2GC. This can also 
be written as 

f = 16Gr,/Re2 = 4gRp;pq/pCG3. (19) 

Now, f has been determined experimentally as described in $ 4  (figure 5 ) ,  and 
the resulting correlations are given by (4) and (5). Applying the experimentally 
determined values of a and b to (17) gives G as a function of q. Figure 7 shows the 
result for the experimental apparatus. Fluid-property values were evaluated a t  
an average temperature of the water in the loop determined from the thermo- 
couple measurements. The straight-line function approximations were faired 
through the predicted points. The plotted points, on the other hand, represent 
the independent experimental determinations of G described in $ 4 .  It can be 
seen that there is good agreement between theory and experiment. It should be 
noted, however, that only the experimental points at low and high q were truly 
representative of steady-state conditions. In  the intermediate range the flow 
was observed to be unstable. The experimental points in that range indicate the 
time-averaged values of G under oscillatory flow conditions. It is clear that the 
correlation between the steady-state prediction and experiment is suitable not 
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only for steady flows, but €or the unstable oscillatory flow conditions as well. In  
view of the fact that the predictions were made using experimentally determined 
values of a and b, it  is not surprising that the measured G values from those same 
experiments are in good agreement with (17) .  

According to ( l o ) ,  G is considered independent of 8 even under dynamic condi- 
tions, provided that the effect of density variations is neglected. In  order to 
investigate the stability of the system, small disturbances are superimposed 
upon the steady-state conditions, and the dynamics of the system are considered. 
Thus, following the approach of Welander (1967),  

G( t )  = Gs+G'(t) ,  (20 )  

( 2 1 )  T(8,  t )  = T,(8) + T'(8, t ) ,  
where C, and T, represent the steady-state components of the mass flux and 
temperature, and G' and T' represent small deviations from these values. The 
flow is stable if these disturbances are damped out, and it is unstable if the distur- 
bances are amplified. In  view of the restricted magnitudes of G' and T',  no 
attempt is made to analyse the strongly nonlinear range of large-scale unstable 
oscillations. Integrating ( 1 2 )  around the loop, as in the steady-state case, and 
inserting (20 )  and ( 2 1 )  gives 

( 2 2 )  
The two quantities in the square brackets in the last term arise from the 
linearized expansion for G2+. Subtracting the steady-state equation ( 1 4 )  from 
( 2 2 )  yields the perturbed momentum equation 

The time-dependent energy equation ( 1  1)  is treated in a similar manner. Terms 
of order T' and G' are retained, but second-order terms involving products of 
these small perturbations are neglected. Subtracting the steady-state energy 
equation from ( 1  1) leads to 

CG'dT, CG,aT' 
( 2 4 )  

- (2h / r )T '  for 0 < 8 < n, 
R do '7 %+Poc- at = 0 €or 7~ < 8 < 2n. aT' 
-- 

In  this treatment steady-state correlations are employed for f and h even under 
dynamic conditions. This is justified, as Welander (1967) has pointed out, when 
the advection time is large in comparison with the time for momentum or energy 
to diffuse across the tube cross-section. 

For convenience, dimensionless quantities are now defined : 

In  terms of these new variables and the Laplace operator s, the perturbed 
momentum equation ( 2 3 )  and energy equation ( 2 4 )  become 
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(2hA/r/?)T‘ for 0 < 8 < n, 
0 for n < 0 < 2n. 

(26) 

G, and dT,/dB are evaluated from the steady-state solution. Differentiating (15) 
and (16 )  and substituting the resulting expressions for dT,/dB into ( 2 6 )  leads to 

0 for o < 8 < n, 

dT‘ 1 -  -+~T”+-G’ = o for 7~ < 8 < 2n, ae n 
where $(8) is defined by 

&8) = ABexp- n (n-0) (i-eeaB). (29) 
AB I 

Equations ( 2 7 )  and (28 )  are linear in 8‘ and T’. Their solutions are 

with the boundary conditions based on continuity of temperature, 

T’(s, 0) = T’(s, 2 7 ~ )  

Evaluation of the integrals in ( 3 0 )  and ( 3 1 )  yields 

and p’(s, n-) = T‘(s, n f ) .  

(33 )  

where D = AB = SnRh/rCG, and where K ,  and K ,  are obtained from the 
boundary conditions T’(s, 0) = T’(s, 2n)  and T‘(s, n-) = T’(s, n+). Equations ( 3 2 )  
and ( 3 3 )  represent the solution to the perturbed energy equation (26 ) ,  and make 
it possible to calculate the integral 

Sd’” T)(t?, 8) cos 8d8 

for substitution into (25 ) .  The manipulations are somewhat lengthy, and are 
therefore not presented in detail here. However, sufficient information has been 
given so that the interested reader may derive the result, which is 

-- S (e-ns+ 1) (Me-nS-D-N 
s2+ 1 

where L, M and N are defined by 

(D/n)2 e D + l  
(O/n),+ I en-  1 ’ 

L = -  D 
N = i + -  

e D -  1 ’  e D - 1 ’  

DeD 
M =  1+- 
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For convenience, this result is written as 

J 2s CP cos m e  = ~ ( s ,  D )  GI 
0 

Substituting (35) into (25) and rearranging gives 

This is written in more compact form as 

Y(s)G’ = 0, 

(35) 

(37) 

where Y(s )  represents the expression in square brackets appearing in (36). In  
general, s can be taken to be a complex variable such that Y(s)  = Y,+iYi, where 
Y, and Yi are the real and imaginary parts of Y(s). 

The stability of the system can be determined by investigating the location of 
the roots of Y(s) .  Since Y(s)  is a transcendental function there is an infinite 
number of roots. If all the roots have negative real parts, the corresponding 
solutions for c‘ are damped, and the system will return to its steady state after 
a perturbation. If, on the other hand, any of the roots are in the right half of the 
s plane (have positive real parts), the corresponding solutions increase in 
magnitude with time, and the system is therefore unstable. In  reality, the flow 
and temperature deviations from the steady state cannot increase- indefinitely 
in these unstable situations, but they do increase until they are finally limited by 
the nonlinearity of the actual system. 

The Nyquist criterion was used to predict the stability limits. It can be shown 
that Y(s )  has no poles in the right half of the s plane. Equation (34) shows that 
there are poles a t  s = - D/2n and a t  s = - D/n i, a total of three poles, but none 
of these are in the right half-plane. From a cursory inspection of (34) it  appears 
that there may be poles a t  the origin and at s = i- i. However, a thorough analysis 
reveals that there are no poles a t  these locations since the ratios of the bracketed 
terms to s2 + 1 or s, respectively (which appear as denominators), remain finite 
in the limit at these three points. The portion of the s-plane contour at infinity 
maps into a corresponding contour segment a t  infinity in the left half of the Y(s)  
plane. Hence, a plot of Y( iw)  alone reveals whether the origin of the Y ( s )  plane is 
encircled. The number of encirclements is equal to the number of roots in the 
right half of the s plane. One or more roots of this type correspond to instability. 

The calculations required to produce detailed contours were somewhat lengthy, 
but straightforward, and were performed using digital computation. Examples of 
results of these calculations are plotted in figure 8 for turbulent flow with D = 0.9 
for several values of E ,  which is defined as Re2r/Grm R. It can be seen from figure 8 
that for large values of E ,  and also for small values of E ,  the contour does not 
enclose the origin. Therefore the system is stable in these ranges. For 

10.66 < E < 38.38, 

however, the Y ( s )  contour encloses the origin, indicating that the system is 
unstable in this range. On the other hand, similar calculations for large values of D 
yielded contours which did not enclose the origin for any value of the parameter E.  
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FIGURE 8. Plots of Y ( i w )  for turbulent flow for D = 0.9. 

Hence, for this range of values of D, the corresponding flows were determined to 
be stable. 

Since the stability of the system is determined by the values of D and E,  the 
regions of stability and instability can be illustrated by plotting the boundary 
between the regions (locus of neutral stability) in D, E co-ordinates. The neutral- 
stability condition corresponds to the situation where the Y ( i w )  contour passes 
through the origin of the Y ( s )  plane (see the contours for E = 10.66 and E = 38.38 
in figure 8). Thus, points on the stability boundary in the D, E plane are deter- 
mined by searching for pairs of D and E values for which Y = Y, + iYi = 0. This 
occurs when bothY, andY, are zero at  some frequency w ,  which is unknown at the 
start of the search procedure. Welander (1967) has developed a similar approach 
in the determination of neutral-stability conditions. 

Since the friction-factor correlation has been established from experiment, b is 
a known constant. Hence, it can be seen from (36) that Y, depends only on D and 
w ,  whereasYi depends also on E. The fact that Y, depends on only two parameters, 
rather than three, is a most fortunate result from the standpoint of the length of 
the calculations required in the search procedure. The procedure therefore treats 

6 F L M  67 
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FIGURE 9. Neutral-stability and operating contours. 

Y, first. Initially a value of D is chosen and a search is conducted to find a value 
of w which makes Y,(D, w )  = 0. In  some cases no such value of w is found, indi- 
cating that there is no point on the neutral-stability contour for the chosen value 
of D. In  other cases two values of w which satisfy Y,.(D, w )  = 0 for the positive 
range of w are found (see figure 8). These frequencies are denoted by w1 and w,, 
respectively, with w1 being the lower frequency. Then, two corresponding values 
of E can be calculated explicitly fromY,(D, wl, E )  = 0 andY,(D, w2, E )  = 0. These 
two calculated values of E are denoted by El and E,, respectively. For D = 0.9, 
for example, E, = 38.38 and E, = 10.66, as shown in figure 8. Thus, for D = 0.9 
there are two points on the neutral-stability contour for turbulent flow, one at 
E = 10.66 and the other at E = 38.38. These are indicated by the two circled 
points appearing in figure 9. The next step in the procedure is to choose a new 
value of D and then repeat the process described above. This yields two more 
points. By establishing pairs of points for each value of D in this manner, the 
neutral-stability contour for turbulent flow was determined. The laminar flow 
contour was obtained by exactly the same procedure, except that a different 
value of b was used. Recall that for laminar flow b = 1-17 and for turbulent flow 
b = 0.45 according to the experiments. 

To predict the values of the input heating rate q which result in unstable flows, 
it is necessary to find the locus of steady-state operating points for the system in 
the D, E plane, with q as a varying parameter. The intersections of this locus with 
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Experimentally Predicted 
observed range of q 

System range of q from figure 9 

Stable 0-0.1 1 0-0.21 
Unstable 0.1 1-0.70 0’21-0’65 
Stable > 0.70 > 0.65 

TABLE 1 

behaviour (W/cm2) (W/cm2) 

the neutral-stability contours define the limits of the range of heat inputs 
corresponding to unstable behaviour (see figure 9). 

For the experimental apparatus, a given value of q leads to corresponding 
calculated values from the steady-state flow analysis. A computed iterative 
scheme was used to do this in order to obtain an appropriate average temperature 
for the evaluation of fluid properties. The results of these calculations appear as 
the locus of operating points in figure 9. Arrows indicate the direction of increasing 
q. It can be seen from figure 9 that the system is predicted to be stable for q less 
than 0-21 W/cm2 and also for q larger than 0.65 W/cm2, with unstable conditions 
being predicted for the intermediate range from 0.21 to 0.65 W/cm2. A comparison 
with experiment is given in table 1. Considering the complexity of .the problem, 
the above comparison indicates reasonable agreement between experiment 
and theory as far as ranges of stability and instability are concerned. 

The operating contour for laminar flow in figure 9 crosses the neutral-stability 
contour for turbulent flow when q is slightly above 0.38 W/cm2. This crossing has 
no physical significance, however, since the flow is still laminar. Thus, the 
turbulent neutral-stability contour does not apply to the actual flow and should 
be disregarded here. For this reason, the turbulent neutral-stability curve is 
shown as a dashed line rather than a solid line in this region. The same comment 
applies to the upper portion of the laminar neutral-stability contour, which 
eventually would be crossed by the operating curve a t  high values of q. 

Oscillation frequencies under unstable conditions were determined from the 
experimental temperature recordings. These are given in figure 10 as a function 
of the imposed heat flux. The neutral-stability points from the analysis are also 
plotted for comparison. The experimental results show that the lowest frequency 
occurs a t  the neutral-stability point a t  the lower heat-flux value. As the imposed 
heat flux increases from this value, causing the system to move into the unstable 
region, the observed frequency of oscillation increases monotonically in an 
approximately linear manner. The highest observed frequency occurs a t  the 
neutral-stability point a t  the higher heat-flux value. Outside the range indicated 
there are no oscillations since the flow is stable (0.1 1 > p > 0-70 W/cm2). The 
heat flux and frequency at the two neutral-stability points were difficult to 
determine precisely from experimental observations. In  order to demonstrate 
this difficulty two experimental determinations are shown in figure 10 for each 
neutral-stability condition. The upper neutral-stability condition exhibits con- 
siderable variability. I n  that case the two heat-flux values deviate from their 

6-2 



84 H .  F .  Creveling, J .  F .  de Paz, J .  Y .  Baladi and R. J .  Schoenhals 

0.020 h i  
0 

0 

0 
0 

0 

0 

FIGURE 10. Experimentally observed frequency of oscillation as a function of imposed heat 
flux and comparison with analytically predicted conditions at  the two neutral-stability 
points. Experiment : 0, unstable ; , neutrally stable. Analytical prediction: A, neutrally 
stable. 

mean by about 4 % ,  while the two frequencies deviate from the mean by 
approximately 8 %. The analytically determined neutral-stability points appear- 
ing in figure 10 occur at frequencies of 0.0086 and 0.0208 Hz. These values deviate 
from the means of the measured values by 34 yo for the lower heat flux and 14 % 
for the higher heat flux. 

Further details of this work are described by Creveling (1964) and de Paz (1972). 
Sponsorship by the United States Atomic Energy Commission and National 
Aeronautics and Space Administration are gratefully acknowledged. 
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